UJI ASUMSI KLASIK DENGAN SPSS 16.0

Disusun oleh: Andryan Setyadharma

FAKULTAS EKONOMI UNIVERSITAS NEGERI SEMARANG 2010

1. MENGAPA UJI ASUMSI KLASIK PENTING?

Model regresi linier berganda (*multiple regression*) dapat disebut sebagai model yang baik jika model tersebut memenuhi Kriteria BLUE (*Best Linear Unbiased Estimator*). BLUE dapat dicapai bila memenuhi Asumsi Klasik.

Sedikitnya terdapat lima uji asumsi yang harus dilakukan terhadap suatu model regresi tersebut, yaitu:

- a. Uji Normalitas
- b. Uji Autokorelasi,
- c. Uji Multikolinieritas
- d. Uji Heteroskedastisitas
- e. Uji Linieritas

Dalam modul ini hanya akan di bahas empat asumsi klasik pertama saja.

2. DATA

Contoh aplikasi ini adalah kasus permintaan ayam di AS selama periode 1960-1982 (Gujarati, 1995: 228).

Tahun	Y	X2	X3	X4	X5
1960	27.8	397.5	42.2	50.7	78.3
1961	29.9	413.3	38.1	52	79.2
1962	29.8	439.2	40.3	54	79.2
1963	30.8	459.7	39.5	55.3	79.2
1964	31.2	492.9	37.3	54.7	77.4
1965	33.3	528.6	38.1	63.7	80.2
1966	35.6	560.3	39.3	69.8	80.4
1967	36.4	624.6	37.8	65.9	83.9
1968	36.7	666.4	38.4	64.5	85.5
1969	38.4	717.8	40.1	70	93.7
1970	40.4	768.2	38.6	73.2	106.1
1971	40.3	843.3	39.8	67.8	104.8
1972	41.8	911.6	39.7	79.1	114
1973	40.4	931.1	52.1	95.4	124.1
1974	40.7	1021.5	48.9	94.2	127.6
1975	40.1	1165.9	58.3	123.5	142.9
1976	42.7	1349.6	57.9	129.9	143.6
1977	44.1	1449.4	56.5	117.6	139.2
1978	46.7	1575.5	63.7	130.9	165.5
1979	50.6	1759.1	61.6	129.8	203.3
1980	50.1	1994.2	58.9	128	219.6
1981	51.7	2258.1	66.4	141	221.6
1982	52.9	2478.7	70.4	168.2	232.6

Tabel 1. Permintaan Ayam di AS, 1960-1982

Sumber: Gujarati (1995: 228)

Adapun variabel yang digunakan terdiri atas:

Y = konsumsi ayam per kapita

X₂ = pendapatan riil per kapita

 X_3 = harga ayam eceran riil per unit X_4 = harga babi eceran riil per unit X_5 = harga sapi eceran riil per unit

Teori ekonomi mikro mengajarkan bahwa permintaan akan suatu barang dipengaruhi oleh pendapatan konsumen, harga barang itu sendiri, harga barang substitusi, dan harga barang komplementer.

Dengan data yang ada, kita dapat mengestimasi fungsi permintaan ayam di AS adalah: $\hat{Y}_i = b_1 + b_2 X_2 + b_3 X_3 + b_4 X_4 + b_5 X_5 + error$

3. UJI NORMALITAS

Cara yang sering digunakan dalam menentukan apakah suatu model berdistribusi normal atau tidak hanya dengan melihat pada histogram residual apakah memiliki bentuk seperti "lonceng" atau tidak. Cara ini menjadi fatal karena pengambilan keputusan data berdistribusi normal atau tidak hanya berpatok pada pengamatan gambar saja. Ada cara lain untuk menentukan data berdistribusi normal atau tidak dengan menggunakan rasio skewness dan rasio kurtosis.

Rasio skewness dan rasio kurtosis dapat dijadikan petunjuk apakah suatu data berdistribusi normal atau tidak. Rasio skewness adalah nilai skewnes dibagi dengan standard error skewness; sedang rasio kurtosis adalah nilai kurtosis dibagi dengan standard error kurtosis. Sebagai pedoman, bila rasio kurtosis dan skewness berada di antara –2 hingga +2, maka distribusi data adalah normal (Santoso, 2000: 53).

LANGKAH-LANGKAH DALAM SPSS 16.0

Lakukan regresi untuk data permintaan ayam di atas. **Analyze** \rightarrow **Regression** \rightarrow **Linear**, akan muncul tampilan sebagai berikut:

 ✓ X2 ✓ X3 ✓ X4 ✓ X5 ✓ YEAR, not periodic [YE → Date. Format: "YYYY" 	Dependent:	Statistics Plots Save Options
	Method: Enter	

Masukkan variabel Y pada kotak sebelah kiri ke kotak **Dependent**, dan variabel X2, X3, X4 dan X5 ke kotak **Independent(s)** dengan mengklik tombol tanda panah. Kemudian pilih S<u>a</u>ve dan muncul tampilan sebagai berikut:

	Residuals
<u>U</u> nstandardized	🔽 U <u>n</u> standardized
Standa <u>r</u> dized	Standardized
Adjusted	Studentized
S.E. of mean predictions	Deleted
	Stud <u>e</u> ntized deleted
)istances	Influence Statistics
Ma <u>h</u> alanobis	Df <u>B</u> eta(s)
Coo <u>k</u> 's	Standardized DfBeta(s)
Leverage values	D <u>f</u> Fit
Prediction Intervals	Standardized DfFit
Mean Individual	Co <u>v</u> ariance ratio
Coefficient statistics	
Create coefficient statistics	
Create a new dataset	
Dataset name:	
O Write a new data file	
File	
	ML file
:XDOLL WOOGEN INFOLMATION TO XI	
export model information to XI	Browse

Centang pilihan **Unstandardized** pada bagian **Residuals**, kemudian pilih **Continue** dan pada tampilan awal pilih tombol **OK**, akan menghasilkan variabel baru bernama Unstandardized Residual (RES_1). Selanjutnya <u>Analyze</u> \rightarrow <u>Descriptive Statistics</u> \rightarrow <u>Descriptives</u> akan muncul tampilan sebagai berikut.

]	Variable(s):	ardized Residu	Options
 ✓ X3 ✓ X4 ✓ X5 				
YEAR, not periodic [YE				
]	0		
Save standardi <u>z</u> ed values	as variable	88		

Masukkan variabel Unstandardized Residual (RES_1) ke kotak sebelah kiri, selanjutnya pilih **Options** akan muncul tampilan sebagai berikut

✓ <u>M</u> ean	Sum <u>S</u> um	
Dispersion —		9
🗹 St̪d. deviation	🗹 Mi <u>n</u> imum	
<u>∨</u> ariance	📝 Ma <u>x</u> imum	
<u>R</u> ange	S. <u>E</u> . mean	
Distribution —		
🗹 <u>K</u> urtosis	Ske <u>w</u> ness	
Display Order –		
⊙ Varia <u>b</u> le list		
O <u>A</u> lphabetic		
O Ascending me	ans	
O <u>D</u> escending m	eans	

Centang pilihan <u>Kurtosis</u> dan Ske<u>w</u>ness dan kemudian Continue dan pada tampilan awal pilih OK. Hasilnya sebagai berikut (Beberapa bagian dipotong untuk menghemat tempat).

	Skev	vness	Kurtosis		
	Statistic	Std. Error	Statistic	Std. Error	
Unstandardized Residual Valid N (listwise)	.105	.481	-1.002	.935	

Terlihat bahwa rasio skewness = 0,105/0,481 = 0,218; sedang rasio kurtosis = -1,002/0,935 = -1,071. Karena rasio skewness dan rasio kurtosis berada di antara -2 hingga +2, maka dapat disimpulkan bahwa distribusi data adalah normal.

4. UJI AUTOKORELASI

Ada beberapa cara yang dapat digunakan untuk mendeteksi ada tidaknya autokorelasi. *Pertama*, **Uji Durbin-Watson** (DW Test). Uji ini hanya digunakan untuk autokorelasi tingkat satu (*first order autocorrelation*) dan mensyaratkan adanya intercept dalam model regresi dan tidak ada variabel lag di antara variabel penjelas. Hipotesis yang diuji adalah:

Ho: p = 0 (baca: hipotesis nolnya adalah tidak ada autokorelasi)

Ha: p ≠ 0 (baca: hipotesis alternatifnya adalah ada autokorelasi)

Keputusan ada tidaknya autokorelasi adalah:

- Bila nilai DW berada di antara d_u sampai dengan 4 d_u maka koefisien autokorelasi sama dengan nol. Artinya, tidak ada autokorelasi.
- Bila nilai DW lebih kecil daripada d_L, koefisien autokorelasi lebih besar daripada nol. Artinya ada autokorelasi positif.
- Bila nilai DW terletak di antara d_L dan d_U , maka tidak dapat disimpulkan.
- Bila nilai DW lebih besar daripada 4 d_L, koefisien autokorelasi lebih besar daripada nol. Artinya ada autokorelasi negatif.
- Bila nilai DW terletak di antara $4 d_U$ dan $4 d_L$, maka tidak dapat disimpulkan.

Gambar 1 di bawah ini merangkum penjelasan di atas.

Durbin-Watson d statistic.

LANGKAH LANGKAH DALAM SPSS 16.0

Lakukan regresi untuk data permintaan ayam di atas seperti pada Uji Normalitas. Setelah itu pilih <u>Statistics</u> akan muncul tampilan seperti di bawah ini. Kemudian centang pilihan <u>Durbin-Watson</u> setelah itu pilih tombol **Continue** dan akhirnya pada tampilan selanjutnya pilih **OK.**

🔛 Linea	r Regression: Stati	stics
Regre	ession Coefficient	✓ Model fit
✓ Est	timates	R squared change
00	<u>n</u> fidence intervals	Descriptives
□ Co	⊻ariance matrix	Part and partial correlations
		Collinearity diagnostics
Resid	uals	
🖸 🖸 🖸	<u>u</u> rbin-Watson	
	asewise diagnostics	·
0	Outliers outside:	3 standard deviations
	<u>A</u> ll cases	
(Continue	Cancel Help

Hasil dari perhitungan Durbin-Watson Statistik akan muncul pada tabel **Model Summary** seperti di bawah ini.

Model	Summary [⊳]
-------	----------------------

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson
1	.971 ^a	.943	.930	1.95320	1.065

a. Predictors: (Constant), X5, X3, X4, X2

b. Dependent Variable: Y

Langkah selanjutnya adalah menetapkan nilai d_L dan d_U. Caranya adalah dengan menggunakan derajat kepercayaan 5%, sampel (n) yang kita miliki sebanyak 23 observasi, dan variabel penjelas sebanyak 4 maka dapatkan nilai d_L dan d_U sebesar 1,078 dan 1,660. Maka dapat disimpulkan bahwa model ini memiliki gejala autokorelasi positif.

5. UJI MULTIKOLINIERITAS

Ada banyak cara untuk menentukan apakah suatu model memiliki gejala Multikolinieritas, pada modul ini hanya diperkenalkan 2 cara, yaitu VIF dan Uji Korelasi.

5.1. Uji VIF.

Cara ini sangat mudah, hanya melihat apakah nilai VIF untuk masing-masing variabel lebih besar dari 10 atau tidak. Bila nilai VIF lebih besar dari 10 maka diindikasikan model tersebut memiliki gejala Multikolinieritas.

LANGKAH-LANGKAH DALAM SPSS 16.0

Kembali Lakukan regresi untuk data permintaan ayam di atas seperti pada Uji Normalitas. Setelah itu pilih <u>Statistics</u> kemudian centang pilihan Co<u>l</u>linearity Diagnostics setelah itu pilih tombol Continue dan akhirnya pada tampilan selanjutnya pilih OK. Hasilnya sebagai berikut.

	Coefficients ^a									
		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics		
Mod	el	В	Std. Error	Beta	t	Sig.	Tolerance	VIF		
1	(Constant)	37.232	3.718		10.015	.000				
	X2	.005	.005	.420	1.024	.319	.019	52.701		
	X3	611	.163	922	-3.753	.001	.053	18.901		
	X4	.198	.064	.948	3.114	.006	.034	29.051		
	X5	.070	.051	.485	1.363	.190	.025	39.761		

a. Dependent Variable: Y

Dapat dilihat bahwa seluruh variabel penjelas memiliki nilai VIF lebih besar 10 maka dapat disimpulkan bahwa model regresi ini memiliki masalah Multikolinieritas

5.2. Partial Correlation

Cara kedua adalah dengan melihat keeratan hubungan antara dua variabel penjelas atau yang lebih dikenal dengan istilah korelasi.

LANGKAH-LANGKAH DALAM SPSS 16.0

<u>Analyze \rightarrow Correlate \rightarrow Partial akan muncul tampilan sebagai berikut.</u>

Masukkan variabel X2, X3, X4 dan X5 ke dalam kotak <u>V</u>ariables, dan variabel Y ke dalam kotak <u>Controlling for</u>, dan kemudian **OK**. Hasilnya sebagai berikut.

Correlations

Contro	ol Variabl	es	X2	X3	X4	X5
Y	X2	Correlation	1.000	.782	.708	.881
		Significance (2-tailed)		.000	.000	.000
		Df	0	20	20	20
	X3	Correlation	.782	1.000	.917	.744
		Significance (2-tailed)	.000		.000	.000
		Df	20	0	20	20
	X4	Correlation	.708	.917	1.000	.602
		Significance (2-tailed)	.000	.000	-	.003
		Df	20	20	0	20
	X5	Correlation	.881	.744	.602	1.000
		Significance (2-tailed)	.000	.000	.003	
		Df	20	20	20	0

Untuk menentukan apakah hubungan antara dua variabel bebas memiliki masalah multikoliniaritas adalah melihat nilai Significance (2-tailed), jika nilainya lebih kecil dari 0,05 (α =5%) maka diindikasikan memiliki gejala Multikolinearitas yang serius. Dari seluruh nilai Significance (2-tailed) di atas, dapat disimpulkan seluruh variabel penjelas tidak terbebas dari masalah Multikolinearitas.

6. UJI HETEROSKEDASTISITAS

Untuk Uji Heteroskedastisitas, seperti halnya uji Normalitas, cara yang sering digunakan dalam menentukan apakah suatu model terbebas dari masalah heteroskedastisitas atau tidak hanya dengan melihat pada Scatter Plot dan dilihat apakah residual memiliki pola tertentu atau tidak. Cara ini menjadi fatal karena pengambilan keputusan apakah suatu model terbebas dari masalah heteroskedastisitas atau tidak hanya berpatok pada pengamatan gambar saja tidak dapat dipertanggungjawabkan kebenarannya. Banyak metoda statistik yang dapat digunakan untuk menentukan apakah suatu model terbebas dari masalah heteroskedastisitas atau tidak, seperti misalnya Uji White, Uji Park, Uji Glejser, dan lain-lain.

Modul ini akan memperkenalkan salah satu uji heteroskedastisitas yang mudah yang dapat diaplikasikan di SPSS, yaitu Uji Glejser.

Uji Glejser secara umum dinotasikan sebagai berikut:

$$|e| = b_1 + b_2 X_2 + v$$

Dimana:

|e| = Nilai Absolut dari residual yang dihasilkan dari regresi model

X₂ = Variabel penjelas

Bila variabel penjelas secara statistik signifikan mempengaruhi residual maka dapat dipastikan model ini memiliki masalah Heteroskedastisitas.

LANGKAH-LANGKAH DALAM SPSS 16.0

Kita sudah memiliki variabel Unstandardized Residual (RES_1) (lihat lagi langkah-langkah uji Normalitas di atas, khususnya halaman 3). Selanjutnya pilih **Transform** → **Compute Variable**, akan muncul tampilan sebagai berikut

Iarget Variable: abresid Type & Label Image: Variable in the state in the st	Numeric Expression: = + > 7 8 9 - - 2 3 - - - 4 5 6 - <th>Function group: All Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Eunctions and Special Variables: \$Casenum \$Date</th>	Function group: All Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Eunctions and Special Variables: \$Casenum \$Date
(optional case selec	tion condition) OK Paste Reset Cancel He	Any Arsin Artan Cdf.Bernoulli

Pada kotak **Target Variable** ketik abresid, pada kotak **Function group** pilih **All** dan dibawahnya akan muncul beberapa pilihan fungsi. Pilihlah **Abs.** Kemudian klik pada tombol **tanda panah arah ke atas**, dan masukkan variabel Unstandardized Residual (RES_1) ke dalam kotak **Numeric Expression** dan tampilannya akan menjadi seperti berikut. Dan akhirnya pilih **OK**.

<u>T</u> arget Variable: abresid Type & Label ✔ Y	ABS(RES_1)	
 X2 X3 X4 X5 YEAR, not periodic [YE Date. Format: "YYYY" Unstandardized Residu 	+ < > 7 8 9 - <= >= 4 5 6 * = ~= 1 2 3 / 8 1 0 . ** ~ () Delete	Function group: All Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Functions and Special Variabl \$Casenum \$Date
[f] (optional case selec	ADS(numexpr), Numeric, Returns the absolute value of numexpr, which must be numeric.	\$Date11 \$JDate \$Sysmis \$Time Abs Any Arsin Artan Cith Duracutti

Kemudian dilanjutkan dengan regresi dengan cara, <u>A</u>nalyze \rightarrow Regression \rightarrow Linear, akan muncul tampilan sebagai berikut:

<i>⊗</i> v	Dependent:	Statistics
∲ X2	Block 1 of 1	Plots
У ХЗ	Deview	S <u>a</u> ve
✓ X4 ✓ X5		Options
I YEAR, not periodic [YE A Date. Format: "YYYY" ∲ Unstandardized Residu	X3 X4 X5 Method: Enter	
	Selection Variable: Selection Variable: Rule Case Labels:	
	WLS Weight:	

Masukkan variabel abresid pada kotak sebelah kiri ke kotak **Dependent**, dan variabel X2, X3, X4 dan X5 ke kotak **Independent(s)** dengan mengklik tombol tanda panah dan OK, hasilnya sebagai berikut:

	Coefficients ^a										
-		Unstandardize	ed Coefficients	Standardized Coefficients							
Mode	l	В	Std. Error	Beta	t	Sig.					
1	(Constant)	-1.507	1.590		948	.356					
	X2	002	.002	-1.097	737	.471					
	X3	.068	.070	.866	.971	.344					
	X4	001	.027	060	055	.957					
	X5	.012	.022	.713	.552	.588					

a. Dependent Variable: abresid

Nilai t-statistik dari seluruh variabel pejelas tidak ada yang signifikan secara statistik, sehingga dapat disimpulkan bahwa model ini tidak mengalami masalah heteroskedastisitas.

DAFTAR PUSTAKA

Gujarati, Damodar (1995). Basic Econometrics. (3rd edition ed.). New York: Mc-Graw Hill, Inc.

Kuncoro, Mudrajad (2000), *Metode Kuantitatif*, Edisi Pertama, Yogyakarta: Penerbit AMP YKPN.

Santoso, Singgih (2000). Buku Latihan SPSS Statistik Parametrik. Jakarta: PT Elex Media Komputindo.

Widarjono, Agus (2005), Ekonometrika: Teori dan Aplikasi, Yogyakarta: Ekonisia

<u>Uji Linearitas Data dengan Program SPSS</u>

Uji Linearitas Data dengan Program SPSS | Sebelumya telah melakukan <u>Uji Normalitas.</u> Uji linearitas bertujuan untuk mengetahui apakah dua variabel mempunyai hubungan yang linear atau tidak secara signifikan. Uji ini biasanya digunakan sebagai prasyarat dalam analisis korelasi atau regresi linear. Dasar pengambilan keputusan dalam uji linearitas adalah:

- Jika nilai probabilitas > 0,05, maka hubungan antara variabel X dengan Y adalah linear.
- Jika nilai probabilitas < 0,05, maka hubungan antara variabel X dengan Y adalah tidak linear.

Untuk memperjelas pemahaman kita tentang bagaimana cara melakukan <u>Uji Linearitas Data</u> <u>dengan SPSS</u> maka simak contoh berikut:

Misalnya kita akan menguji variabel Minat dengan Prestasi apakah mempunyai hubungan yang linear secara signifikan atau tidak, dengan contoh datanya sebagai berikut:

Minat	75	60	65	75	65	80	75	80	65	80	60	65
Prestasi	85	75	75	90	85	85	95	95	80	90	75	75

Langkah-langkah yang harus dilakukan adalah:

- 1. Buka program SPSS
- 2. Klik Variabel View pada SPSS Data editor
- 3. Pada kolom Name, ketik X pada baris pertama dan ketik Y pada baris kedua.
- 4. Pada kolom Decimals, ganti dengan 0.
- 5. Pada kolom Label, ketik Minat untuk baris pertama dan Prestasi untuk baris kedua.
- 6. Abaikan kolom yang lainnya.
- 7. Klik Data View, pada SPSS Data Editor.
- 8. Ketik datanya seperti tabel di atas sesuai dengan variabelnya.
- 9. Klik menu Analyze Compare Means
- 10. Masukkan variabel Prestasi pada kotak Dependent list, dan masukkan variabel Motivasi ke kotak Independent list
- 11. Klik Option, pada Statistik for Fist Layer klik Test for Linearity, kemudian klik Continue
- 12. Klik OK untuk mengakhiri perintah, maka akan muncul Outpunya sebagai berikut:

		ANOV	/A Table				
			Sum of Squares	df	Mean Square	F	Sig.
Prestasi * Minat	Between Groups	(Combined)	422.727	3	140.909	6.576	.019
		Linearity	397.195	1	397.195	18.536	.004
		Deviation from Linearity	25.532	2	12.766	.596	.577
	Within Groups		150.000	7	21.429		
	Total WWW	<i>i.</i> konsistensi.co	572.727	10			

Kesimpulannya:

Dari Output di atas diperoleh nilai Fhitung = 0,596 < Ftabel = 4,74. Angka Ftabel di dapat

dari df 2.7 lihat output df yang saya beri tanda merah, dan cari <u>distibusi tabel nilai F0,05</u> <u>Degress of Freedom For Nominator</u> maka akan ketemu nilai Ftabel sebesar 4,74. Probabilitas = 0,577 > 0,05, maka dapat disimpulkan bahwa antara Minat dengan Prestasi mempunyai hubungan yang Linear.

Sekian artikel dengan judul <u>Uji Linearitas Data dengan Program SPSS</u> selanjutnya akan di bahas mengenai <u>Uji Independent Data dengan SPSS</u>.

Search : Uji Linearitas Data dengan Program SPSS, Cara melakukan Uji Linearitas Data dengan Program SPSS untuk penelitian kuantitatif

Img : Dokumen SPSS

Source : Widiyanto, Joko. 2012. SPSS For Windows. Surakarta: Badan Penerbit-FKIP Universitas Muhammadiyah Surakarta.

Description: Uji Linearitas Data dengan Program SPSS Rating: 3.5 Reviewer: Sahid Raharjo ItemReviewed: Uji Linearitas Data dengan Program SPSS

Sumber: http://www.konsistensi.com/2013/04/uji-linearitas-data-dengan-program-spss.html

UJI NORMALITAS DATA

Sebelum kita bicarakan ujin normalitas berikut kita perhatikan gambar distribusi **normal** berikut ini :

Garis mendatar pada grafik kurva **normal umum** adalah **sumbu-x** Garis mendatar pada grafik kurva **normal standar** adalah **sumbu-z**

Luas daerah di bawah kurva norman adalah 1 satuan, luas daerah yang diarsir (warna hitam adalh 50% dari luas keseluruhan (0,5)

Dalam tabel-z, terlihat bahwa luas dari 0 (lihat kurva normal standart) ke 3 (sebelah kanan) adalah 0,5000 (atau 0,5)

Gunakanlah tabel-z untuk mencari luas antara dua nilai z, yaitu:

- 1. 2 dan 3 (lihat gambar yang diarsir hitam).
- 2. 1,8 dan 1,9
- 3. -1,5 dan 1,6
- 4. -1,9 dan -1,7

Uji Normalitas

Banyak pengujian statistik yang mensyaratkan distribusi data harus **normal** dan **homogen**. Pada uraian berikut ini akan diberikan contoh uji normalitas distriusi data dengan uji Chi-Kuadrat, uji Lilefors dan uji Kolmogorov-Smirnov.

1. Uji normalitas data tidak bergolong.

Menggunakan uji normalitas KOLMOGOROV-SMIRNOV

Contoh : 63, 58, 32, 54, 64, 43, 62

Dari data di atas hitung terlebih dahulu rata-rata \bar{x} dan standar deviasi s

Ubabahlah nilai x ke nilai standar z dengan rumus $z = \frac{x - \bar{x}}{s}$

Data di atas diisikan pada layar excel seperti berikut :

А	В
x	z
32	-1.81
43	-0.89
54	0.02
58	0.36
62	0.69
63	0.77
64	0.86
rata-rata	53.71429
standev	12.00992
	A x 32 43 54 58 62 63 63 64 rata-rata standev

Rumus standar deviasi : =STDEV(A2 : A8) = 12.009992

Selanjutnya dicari luas daerah di bawah kurva norman standar (tabel-z) :

- Dari kiri sampai ke z = -1.81 = 0.0351
- Dari kiri sampai ke z = -0.89
- Dari kiri sampai ke z = 0,02
- Dari kiri sampai ke z = 0.36
- Dari kiri sampai ke z = 0.69 dan
- Dari kiri sampai ke z = 0.77 seperti tabel berikut :

х	Z	LUAS KURVA Z	PELUANG HARAPAN	D (selisih)
32	-1,81	0,0351	0,142857	0,108
43	-0,89	0,1867	0,285714	0,099
54	0,02	0,508	0,428571	0,079
58	0,36	0,6406	0,571429	0,069
62	0,69	0,7549	0,714286	0,041
63	0,77	0,7794	0,857143	0,078
64	0,86	0,8051	1	0,195

Selajutnya **PELUANG HARAPAN** dicari dari urutan data yang paling kecil dibagi banyaknya data. Contoh di atas banyaknya data 7, jadi pada baris pertama peluang harapan 1/7 = 0.142857 (lihat tabel di atas) Baris ke dua peluang aharapan 2/7 = 0.285714 dan baris terakhir 7/7 = 1. **Kolom D (selisih)** diisi dengan |**kolom peluang harapan – kolom luas kurva z |** (diambil harga mutlaknya).

Selanjutnya pada kolom D, diambil nilai yang paling tinggi, kita sebut D_{hitung}.. D_{hitung} = 0,195

Rumus _{Dtabel} =
$$\frac{1,36}{\sqrt{n}}$$
, *n banyaknya data*. Jadi D_{tabel} = $\frac{1,36}{\sqrt{7}}$ = 0,5140

D_{hitung} < D_{tabel}, maka data berdistribusi normal

Bila dihitung dengan SPSS, spserti berikut langkah-langkahnya seperti berkut:

1. Isikan data di atas pada lembar SPSS pada halaman berikut.

- 2. Klik Analyze..., Kliik Nonparametric Test.
- 3. Pilih / Klik 1 Sample K-S
- 4. Akan muncul kotak dialog seperti pada halaman berikut

)	,
	х
1	63
2	58
3	32
4	54
5	64
6	43
7	62
_	

One-Sample Kolmogorov-Smir	nov Test	×
	Test Variable List.	Exact Options
Test Distribution V Normal Uniform Poisson Exponential OK Paste	Reset Cancel H	ieip

- 5. Isikan x dari kotak sebelah kiri hingga berpidah ke kotak sebelah kanan seperti pada gambar di atas.
- 6. Kita centang Normal seperti di atas, dan klik Ok.
- 7. Akan muncul hasil seperti berikut :

One-Sample Kolmogorov-Smirnov Test

		VAR00001
Ν		7
Name al Dana na stana (a. h.)	Mean	53,7143
Normal Parameters(a,b)	Std. Deviation	12,00992
Most Extreme	Absolute	,224
Differences	Positive	,196
	Negative	-,224
Kolmogorov-Smirnov Z		,592
Asymp. Sig. (2-tailed)		,875

a Test distribution is Normal.

b Calculated from data.

Perhatikan bilangan Asymp.Sig (2-tailed) = 0.875 > 0.05, maka data di atas adalah normal, seperti hasil terdahulu.

Contoh 2

	iuas		
z	kurva	harapan	D
-1,14	0,1271	0,142857	0,015757
-0,74	0,2296	0,285714	0,056114
-0,34	0,3669	0,428571	0,061671
-0,34	0,3669	0,571429	0,204529
-0,08	0,4681	0,714286	0,246186
0,85	0,8023	0,857143	0,054843
1,78	0,9625	1	0,0375
64,57143 7 524563			
	z -1,14 -0,74 -0,34 -0,34 -0,08 0,85 1,78 64,57143 7,524563	z kurva -1,14 0,1271 -0,74 0,2296 -0,34 0,3669 -0,34 0,3669 -0,08 0,4681 0,85 0,8023 1,78 0,9625 64,57143 7,524563	z kurva harapan -1,14 0,1271 0,142857 -0,74 0,2296 0,285714 -0,34 0,3669 0,428571 -0,34 0,3669 0,571429 -0,08 0,4681 0,714286 0,85 0,8023 0,857143 1,78 0,9625 1 64,57143 7,524563

Contoh 3

		Luas		
X	Z	kurve	Harapan	D(selisih)
0	-1,813	0,0351	0,045	0,010
4	-0,846	0,1977	0,091	0,107
4	-0,846	0,1977	0,136	0,061
4	-0,846	0,1977	0,182	0,016
4	-0,846	0,1977	0,227	0,030
4	-0,846	0,1977	0,273	0,075
4	-0,846	0,1977	0,318	0,120
5	-0,604	0,2743	0,364	0,089
5	-0,604	0,2743	0,409	0,135
6	-0,363	0,3594	0,455	0,095
6	-0,363	0,3594	0,500	0,141
8	0,121	0,5478	0,545	0,002
8	0,121	0,5478	0,591	0,043
8	0,121	0,5478	0,636	0,089
9	0,363	0,6406	0,682	0,041
9	0,363	0,6406	0,727	0,087
10	0,604	0,7257	0,773	0,047
12	1,088	0,8621	0,818	0,044
12	1,088	0,8621	0,864	0,002
12	1,088	0,8621	0,909	0,047
13	1,329	0,9082	0,955	0,046
18	2,538	0,9945	1,000	0,005
Mean	7,5			
S	4,137517			

Cell yang berwarna kuning disebut bilangan KOLMOGOROV-SMIRNOV Hitung.

 $D_{tabel} = 0,290$

 $D_{hitung} < D_{tabel}$ (0,141 < 0,290) H_0 diterima atau data berdistribusi normal

Jika diuji dengan SPSS, maka hasilnya sebagai berikut :

		VAR00001
Ν		22
	Mean	7,5000
Normal Parameters(a,b)	Std. Deviation	4,13752
Most Extreme	Absolute	,153
Differences	Positive	,142
	Negative	-,153
Kolmogorov-Smirnov Z		,719
Asymp. Sig. (2-tailed)		,679

One-Sample Kolmogorov-Smirnov Test

a Test distribution is Normal.

b Calculated from data.

Bilangan sig. 0,679 > 0,05 yang berarti H_0 diterima atau data berdistribusi normal.

TUGAS PRAKTIKUM

Gunakan data Karyawan.

Selidiki apakah gaji Karyawan Wanita berdistribusi Normal.

Selidiki apakah gaji karyawan yang berpendidikan sarjana berdistribusi normal.

Uji normalias data bergolong

Contoh : Nilai Ujian 20 mahasiswa adalah sebagai berikut :

91	50	73	74	55	86	70	43	47	80
40	85	64	61	58	95	52	67	83	92

Uji apakah data di atas bersdistribusi normal ?

I. Kita Uji dengan rumus Chi-Kuadrat (χ^2)

Langkah-langkah pembuktian

40 - 50 51 - 61	
51 - 61	Ļ
	Ļ
62 - 72	5
73 - 83	Ļ
84 - 94	Ļ
95 - 105	

1. Susun data tersebut dalam daftar distribusi frekwensi begolong sebagai berikut :

$\overline{X} = 68.3$

DEVIASI STANDAR = 17.23552

2. Menentukan batas bawah tiap kelas kelas interval dan nilai standarnya. Nilai standar

Batas Kls Z bts.kls
39.5 -1.70
50.5 -1.06
61.5 -0.42
72.5 0.22
83.5 0.87
94.5 1.51
105.5 2.15

Gunakan Tabel Z untuk mencari luas diantara 2 nilai Z di atas ! Sehingga terdapat tabel berikut :

Batas Bawah Kelas	z _i batas kelas	Luas tiap batas interval	Ei	$O_i (E_i - O_i)^2 (E_i - O_i)^2 / E_i$	_
39.5 50.5 61.5 72.5 83.5 94.5 105.5	-1.70 -1.06 -0.42 0.22 0.87 1.51 2.15	0.1000 0.1926 0.2499 0.2207 0.1267 0.0497	2.00 3.85 5.00 4.41 2.53 0.99	4.00 4.00 3.00 4.00 4.00 1.00	=

 E_i = banyaknya data dikalikan dengan kolom **luas tiap batas interval** O_i = nilai frekwensi dari tabel.

3.687109

3. Menghitung Chi-Kuadrat dengan rumus : $\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$ $\chi^2 = \frac{(4 - 2.00)^2}{2.00} + \frac{(4 - 3.85)^2}{3.93} + \frac{(3 - 5.00)^2}{5.00} + \frac{(4 - 4.41)^2}{4.41} + \frac{(4 - 2.53)^2}{2.53} + \frac{(1 - 0.99)^2}{0.99}$

= 3.687109

Jadi Chi=Kuadrat = 3.687109

4. Dengan derajad kebebasan (k-3)=6-3=3, taraf signifikansi 5%, didapat dalam tabel

$$\chi^2_{(0.95)(3)} = 7.81$$

5. Karena $\chi^2_{hitung} = 3.687109 < \chi^2_{tabel} = 7.81$, maka diterima bahwa data berdistribusi **normal.**

II. Kita Uji dengan Cara Liliefors

Keunggulan metode Liliefors dapat digunakan dengan sampel kecil dan tidak perlu membuat tabel distribusi bergolong.

Dari sekumpulan data cukup kita cari rata-rata dan standar deviasinya.

Langkah langkah pembuktiannya :

1. Menentukan Hipotesis :

H₀ : Sampel random berasal dari populasi normal, yang rata-rata dan

standar deviasinya tidak diketahui.

H_a : Distribusi data populasi tidak normal.

- 2. Menghitung tingkat signifikansi
- 3. Menghitung **angka baku** dari masing-masing data (X).
- 4. Menghitung probabilitas angka baku secara kumulatif $F(Z_i) = P(Z \square Z_i)$.
- 5. Menghitung $S(Z_i) = \frac{banykanya \ Z \le Z_i}{n}$
- 6. Menghitung selisih $|F(Z_1) S(Z_i)|$

- 7. Mengambil harga yang paling besar di antara harga-harga mutlak, kita sebut L_0
- 8. Membandingkan L₀ dengan Tabel Nilai Kritis Untuk Uji Liliefors.

Contoh membuktikan bahwa data di atas normal

Kita buat daftar seperti berikut:

Ν	Χ	Z	F(Z)	S(Z)	F(Z)-S(Z)
1	40	-1,64	0,0505	0,05	0,0003
2	43	-1,47	0,0708	0,10	0,0289
3	47	-1,24	0,1075	0,15	0,0417
4	50	-1,06	0,1446	0,20	0,0558
5	52	-0,95	0,1711	0,25	0,0778
6	55	-0,77	0,2206	0,30	0,0794
7	58	-0,60	0,2743	0,35	0,0749
8	61	-0,42	0,3372	0,40	0,0640
9	64	-0,25	0,4013	0,45	0,0485
10	67	-0,08	0,4681	0,50	0,0301
11	70	0,10	0,5398	0,55	0,0107
12	73	0,27	0,6064	0,60	0,0074
13	74	0,33	0,6293	0,65	0,0205
14	80	0,68	0,7517	0,70	0,0513
15	83	0,85	0,8023	0,75	0,0531
16	85	0,97	0,8340	0,80	0,0336
17	86	1,03	0,8485	0,85	0,0023
18	91	1,32	0,9066	0,90	0,0060
19	92	1,37	0,9162	0,95	0,0346
20	95	1,55	0,9394	1,00	0,0607

DAFTAR HITUNG UNTUK UJI LILLIEFORS

Keterangan Tabel :

Kolom I adalah nomor urut data

Kolom II adalah data

Kolom III nilai standar (angka standar) dari setiap data (X), didapat dari rumus :

$$Z_i = \frac{X_i - \overline{X}}{s} = \frac{67 - 68.3}{17.23552} = -0.08$$
 (conton baris 10)

Kolom IV didapat dari banyaknya nilai Z sampai dengan nomor 10 dibagi n (=20)

- $F(Z) = Luas di bawah kurva normal dari dari kiri sampai ke <math>Z_i = -0.08$ sama dengan luas kurva normal di atas Z = 0.08 = 0.500 - 0.0319 = 0.468174 - 68.3
- $Z_i = \frac{74 68.3}{17.23552} = 0.33$ (contoh baris 13)

$$F(Z) = 0.5 + 0.1293 = 0.6293$$

Kolom V didapat dari $S(Z) = \frac{10}{20} = 0.5$ (contoh baris 10, ada 10 buah nilai Z \square Z_i)

$$S(Z) = \frac{13}{20} = 0.65$$
 (contoh baris 13, ada 13 buah nilai Z [] Z_i)

Kolom VI didapat dari selisih kolom IV dan kolom V

$$|F(Z) - S(Z)| = |0.4681 - 0.50| = 0.0319$$
 (baris 10)
 $|F(Z) - S(Z)| = |0.6293 - 0.65| = 0.0207$ (baris 13)

Pada kolom terakhir (kolom VI) , bilangan yang terbesar di antara nilai selisih adalah 0,0794, maka $L_0 = 0.0794$

Nilai L₀ di atas dibandingkan dengan Tabel Nilai Kritis Untuk Uji Liliefors, sebagai berikut :

Karena $L_0 = 0.0794 < 0.190$, maka H_0 diterima. Ini berarti data di atas dapat dianggap berasal dari populasi normal.

Uji cara Liliefors diatas prinsipnya sama dengan uji cara Kolmogorov-

Semirnov. Perbedaannya hanya pada penggunaan tabel. Uji Kolmogorov-

Semirnov tabelnya berbentuk rumus Rumus _{Dtabel} =

 $\frac{1,36}{\sqrt{n}}$, *n banyaknya data*. Sedangkan Uji Liliefors menggunakan tabel NILAI KRITIS UNTUK UJI LILIEFORS, seperti tabel berikut.

	Taraf nyata 🛛							
	0.01	0.05	0.10	0.15	0.20			
n = 4	0.417	0.381	0.352	0.319	0.300			
5	0.405	0.337	0.315	0.299	0.285			
6	0.364	0.319	0.294	0.277	0.265			
7	0.348	0.300	0.276	0.258	0.247			
8	0.331	0.285	0.261	0.244	0.233			
9	0.311	0.271	0.249	0.233	0.223			
10	0.294	0.258	0.239	0.224	0.215			
11	0.284	0.249	0.230	0.217	0.206			
12	0.275	0.242	0.223	0.212	0.199			
13	0.268	0.234	0.214	0.202	0.190			
14	0,261	0.227	0.207	0.194	0.183			
15	0.257	0.220	0.201	0.187	0.177			
16	0.250	0.213	0.195	0.182	0.173			
17	0.245	0.206	0.289	0.177	0.169			
18	0.239	0.200	0.184	0.173	0.166			
19	0.235	0.195	0.179	0.169	0.163			
20	0.231	0.190	0.174	0.166	0.160			
25	0.200	0.173	0.158	0.147	0.142			
30	0.187	0.161	0.144	0.136	0.131			
n > 30	1.031	0.886	0.805	0.768	0.736			

NILAI KRITIS UNTUK UJI LILIEFORS

TUGAS TERSTRUKTUR

Uji apakah Gaji Karyawan berdistribusi normal, dengan cara Uji Liliefors.

DAFTAR F

LUAS DIBAWAH LENGKUNGAN NORMAL STANDAR Dari 0 ke z. (Bilangan dalam badan daftar menyatakan desimal).

z	0	. 1	2	3	4-	5	6	7	8	9
0.0	0000	0040	0080	0120	0160	0199	0239	0279	0319	0359
0,1	0398	0438	0478	0517	0557	0596	0636	0675	0714	0754
0.2	0793	0832	0871	0910	0948	0987	1026	1064	1103	1141
0.3	1179	1217	1255	1293	1331	1368	1406	1443	1480	1517
0,4	1554	1591	1628	1664	1700	1736	1772	1808	1844	1879
0,5	1915	1950	1985	2019	2054	2088	2123	2157	2190	2224
0,6	2258	2291	2324	2357	2389	2422	2454	2486	2518	2549
0,7	2580	2612	2642	2673	2704	2784	2764	2794	2823	2852
0,8	2881	2910	2939	2967	2996	3023	3051	3078	3106	3133
0,9	3159	3186	3212	3238	3264	3289	3315	3340	3365	3389
1,0	3413	3438	3461	3485	3508	3531	3554	3577	3599	3621
1,1	3643	3665	3686	3708	3729	3749	3770	3790	3810	3830
1,2	3849	3869	3888	3907	3925	3944	3962	3980	3997	4015
1,3	4032	4049	4066	4082	4099	4115	4131	4147	4162	4177
1.4	4192	4207	4222	4236	4251	4265	4279	4292	4306	4319
1,5	4332	4345	4357	4370	4382	4394	4406	4418	4429	4441
1,6	4452	4463	4474	4484	4493	4505	4315	4525	4535	4545
1,7	4554	4564	4573	4582	4591	4599	4608	4616	4625	4633
1,8	4641	4649	4656	4664	4671	4678	4686	4693	4699	4706
1,9	4713	4719	4726	4732	4738	4744	4750	4756	4761	4767
20	4772	4778	4783	4788	4793	4798	4803	4808	4812	4817
2,1	4821	4826	4830	4834	48.38	4842	4846	4850	4854	4857
22	4861	4864	4868	4871	4875	4878	4881	4884	4887	4896
2,3	4893	4896	4898	4901	4904	4906	4909	4911	4913	4916
2.4	4918	4920	4922.	4925	4927	4929	4931	4932	4934	4936
2,5	4938	4940	4941	4943	4945	4946	4948	4949	4951	4952
2,6	1953	4955	4956	4957	4959	4960	4961	4962	4963	496
2,7	4965	1966	4967	4968	4969	4970	4971	4972	4973	4974
2,8	4974	4975	4976	4977	4977	4978	4979	4979	4980	4981
2.9	4981	4982	4982	4983	4984	4984	4985	4985	4986	4986
3,0	4987	4987	4987	4988	4988	4989	4989	4989	4990	4990
3,1	4990	4991	4991	4991	4992	4992	4992	4992	4993	4993
3,2	4993	4993	4994	4994	4994	4994	4994	4995	4995	499
3,3	4995	4995	4995	4996	4996	4996	4996	4996	4996	499
3,4	4997	4997	4997	4997	4997	4997	4997	4997	4997	4990
3,5	4998	4998	4998	4998	4998	4998	4998	4998	4998	4990
3,6	4998	4998	4999	4999	r4999	4999	4999	4999	4999	499
3,7	4999	4999	4999	4999	4999	4999	4999	4999	4999	499
3,8	4999	4999	4999	4999	4999	4999	4999	4999	4999	499
3.9	5000	5000	5000	5000	5000	5000	5000	5000	5000	500

Sumber : Theory and Problems of Statistics, Spiegel, M.R., Ph.D., Schaum Publishing Co., New York, 1961.

Jika data di atas diolah dengan SPSS yang lain (Explore), setelah data diinput ke layar SPSS seperti dibawah ini, Klik Analyze-Descrptive Statistics-Explore, seperti terlihat pada kotak dialog.

Untitled1 [DataSet0] - SP	SS Statistic	s Data Edit	or					
<u>File E</u> dit <u>\</u>	∕iew <u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	Add-g	<u>o</u> ns	Window	<u>H</u> elp
🗁 📙 🚊	📴 🔶 👼	1	Report	ts		→	>	è 🍨 考	7
21 : x			D <u>e</u> scri	iptive Statis	rtics	→ 1	123 E	requencies	[
	х	var	Ta <u>b</u> les	s		- • [σ	escriptives.	
1	9	1	RFM A	Analys <u>i</u> s		•	Q , <u>E</u>	xplore	
2	5	כ	Compa	are Means			X	<u>o</u> rosstabs	100
3	7:	3	<u>G</u> ener	al Linear M	odel	•	1/2	<u>R</u> atio	
4	7.	4	Gener	ali <u>z</u> ed Line:	ar Models	•	📩 E	-P Plots	
5	5	5	Mi <u>x</u> ed	Models		· • [[<u>\$</u>	<u>a</u> -Q Plots	
6	8	3	<u>C</u> orrel	ate		- •			
7	7)	<u>R</u> egre	ssion		- -			
8	4	3	L <u>og</u> line	ear		- -			
9	4	7	Neura	l Net <u>w</u> orks		- •			
10	8)	Classi	ÍY					
11	4	D	<u>D</u> imen	sion Reduc	tion	-			
12	8	5	Sc <u>a</u> le			- -			
13	6	4	<u>N</u> onpa	arametric Te	ests	- •			
14	6	1	Foreca	asting		- •			
15	5	3	<u>S</u> urviv	/al					
16	9	5	M <u>u</u> ltipl	e Respons	e				
17	5.	2	🛃 Missin	ig Value An	nal <u>γ</u> sis				
18	6	7	Mul <u>t</u> ipl	e Imputatior	n				
19	8	3	Compl	ex Samples	S				
20	9.	2	<u>Q</u> uality	y Control					
21			ROC C	Cur <u>v</u> e					

Selanjutnya akan muncul kotak berikut :

Pindahkan variabel x ke kotak sebelah kanan

Klik tombol Plots....

Akan muncul kotak dialog berikutnya.

Explore	×
•	Dependent List:
•	Eactor List:
Display Display Display Display Display Display	
OK Paste	Reset Cancel Help

Explore	Explore: Plots	Statistics Plots Options
Display Both	Normality plots with tests Spread vs Level with Levene Test Nong Power estimation Transformed Power: Natural log Untransformed Continue Cancel Help	

Klik kotak di depan kotak Normality plots with tests.

Kemudian klik tombol Continue, seterusnya klik tombol Ok.

Hasil olahan data seperti terlihat berikut :

Tests of Normality

	Kolm	ogorov-Smir	mov ^a	Shapiro-Wilk			
	Statistic	df	Siq.	Statistic	df	Siq.	
х	.103	20	.200	.955	20	.458	

a. Lilliefors Significance Correction

*. This is a lower bound of the true significance.

Dari test Kolmogorov-Smirnov angka sig = 0.200 > 0.05, berarti data x NORMAL Demikian juga dari Shapiiro-Wilk angka sig = 0.458 > 0.05, x NORMAL, hasilnya sama dengan Uji Liliefors di atas.

Dilihat dari grafik :

Pada grafik , data menyebar dekat dengan garis lurus, dan data mengikuti ke kanan atas. Ini menunjukkan data mengikuti distribusi NORMAL.

Pada grafik di atas tidak membentuk pola tertentu. Dengan tidak adanya sebuah pola tertentu, maka bisa dikatakan distribusi data adalah NORMAL

Bandingkan dengan contoh berikut :

EXPERIMEN			KONTROL				
32	31	30	18	18	31	20	21
20	34	32	20	34	17	19	19
33	25	18	18	19	25	16	24
19	31	29	34	24	16	27	23
21	32	20	16	16	24	18	30
32	16	27	32	28	30	24	32
17	30	26	17	19	18	22	17
34	27	19	26	30	30	20	25
21	31	20	31	18	29	18	34

Apakah data kelompok eksperimen dan data kelompok kontrol berdistribusi normal ? Hasil Uji normalitas seperti berikut :

Tests of Normality

	Kolm	ogorov-Smir	mov ^a	Shapiro-Wilk			
	Statistic	df	Siq.	Statistic	df	Siq.	
x1	.179	36	.005	.877	36	.001	
x2	.162	36	.018	.913	36	.008	

a. Lilliefors Significance Correction

Ternyata x1 dan x2 tidak berdistribusi Normal, karena angka sig < 0.05, baik uji Kolmogorov-Smirnov maupun uji Shapiri-Wilk

Kita lihat dari garfik NORMAL Q-Q PLOT dan DETRENDED NORMAL Q-Q PLOT seperti berikut :

Data menjauhi garis lurus, walaupun mengarah ke kanan atas.

Datanya membentuk pola tertentu, yakni menurun, naik dan menurun. Dengan adanya pola tertentu, maka bisa dikatakan distribusi data tidak normal.

Demikian juga untuk data x2 berikut :

